Chap 4. Principal Components Analysis

History

» First introduced by Karl Pearson (1901) in Philosophical
Magazine as a procedure for finding lines and planes which
best fit a set of points in p-dimensional space. The focus was
on geometric optimization.

Basic ldea

e The general objectives are

v" Dimension reduction

v’ Interpretation of data

Reduce the dimensionality of a data set in which there is a large
number of inter-related variables while retaining as much as
possible the variation in the original set of variables.

The reduction is achieved by transforming the original variables to
a new set of variables, “principal components, that are
uncorrelated and ordered such that the first few retains most of the
variation present in the data.
Goals & Objectives

» Reduction and summary — data reduction.

» Study the structure of X (or S or R) — Interpretation.




Study the structure of X

illustrates how the overall shape of the data defines the covariance matrix:

Figure 4. The covariance matrix defines the shape of the data. Diagonal spread is captured by
the covariance, while axis-aligned spread is captured by the variance.



Applications

» Interpretation (study structure)

» Create a new set of variables (a smaller number that are
uncorrelated). These can be used in other procedures (e.g.,
multiple regression).

» Select a sub-set of the original variables to be used in other
multivariate procedures.

» Detect outliers or clusters of observations.

e Algebraically, principal components are particular uncorrelated linear
combinations of the p random variables X, Xo,--- , X,.

e Geometrically, principal components represent the selection of a new
coordinate system obtained by rotating the original system with
X1, Xo,---, X, as the coordinate axes.
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Figure 8.4, Johnson and Wichern (2007)



» PCs represent a selection of a new coordinate system obtained
by rotating the original axes to a set of new axes (to provide a
simpler structure).

» The first principal component represents the direction of
maximum variability.

» The second principal component represents the direction of
maximum variability that is orthogonal to the first.

» And so on, until the last PC which represents the direction of
minimum variability & orthogonal to all of the others.

4.2 Definition and Derivation of PC’s

MATRIX ALGEBRA - REVISIONS

e Principal components represent the directions with maximum variability
and provide a simpler and more parsimonious description of the covariance
structure. '

Let the random vector X = (X3, Xo,--- , X,)" have the covariance matrix
3. with eigenvalues \y > Ay > --- > A\, > 0.). ande T ()((V = Q\)

Y| = a/1X =anX1 t+apXo+---+ alep
Yo = ayX = an X1 + ageXo + -+ + azp X,

Y, = a;,X = ap1 X1+ appXo + - +appX,
4
Var(Y;) = aXa; Cov(Y;,Y;) = a;Xa,,



Principal components

Ist PC = linear combination a}X that maximizes Var(a}X)

st. aja; =1

2nd PC = linear combination a5X that maximizes Var(a5X)
s.t. abay =1 and Cov(a}X,a5X) =0

At the ith step,

ith PC = linear combination a;X that maximizes Var(a;X)
s.t. ala; =1 and Cov(a/X,a;.X) =0, fork < i.

Principal components - Resu|T1¢

Let the random vector X =

(X1, X2, -+, Xp) have the covariance matrix

¥ with eigenvalue-eigenvector pairs (A1, %1), (A2, %2), ..., (Ap, %) where
A1 > Ay > - > )\, > 0. Then, the ith principal component is

Vi =8X =¥ Xy + 5o Xo+ -+ %Xy, i=12,....p

and

@ Var(Y;) =¥§X% =\, fori=1,2,...,p
(j Cov(Y;, Yz)
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Prove o a"}:xa

a = var(Y1)
a’Xxa = var(Y;)a'a
a’YXya—var(Yy)ala = 0
a'(Xxa—var(Yi)a) = 0 (since a # 0)
Xyxa—var(Yy)a = 0
ZX a = var( Yl) a
NN NSRRI AN
pxp px1 scalar Px1

which is just the equation what eigenvalues and eigenvectors solve.

$/ \{{: ?VLX w\'\(me_x L5 \’N -X’\'\, -USQY\\TQ_&)*Q 'g-.'_i
GXML\{U;%L):
(1) VU{(\{L): TR = Yo vl e =
‘,Z“sﬁ, P PR
Z\i: >§;\ L

L4 K T

Tover (%)%= 802X« =

—

_ T >\K\C\A

=) 8 Y= O o

A(;r'{,tﬁ_

‘(1 and YK ane UnC,O(\(LQ)&q‘Q& . "’TNL
Y= O



Thus, the PC’s are uncorrelated and have variance equal

to the eigenvalues of the covariance matrix.

Obs:

1. If some eingenvalues are equal the choice of the
corresponding eigenvectors are not unique => PC’s is
not unique;

2. |If \(L" 7\ rs Pl o<t e e \{\n-“‘:(,c

15 also o..C. aince (-Ic>(‘ ,\,C\"-‘ 1 and
ven, (- %) = VG&('}SE),S,’): e

Properties of PC. + Geometric properties of PC

Principal components - Rocu\ T ¢

Let the random vector X = (X1, X», -+, X,)’ have the covariance matrix
3 with eigenvalue-eigenvector pairs (A1, ¥1), (A2, ¥2), ..., (Ap,%p) where

AM>A>-- 22,20 Let Y] :}le Yo =¥5X, -+, Y, =¥ X be the

principal components. Then -
o1+ topy =0  Var(X;) = A+ + X, = >0 Var(V;)

Prove ¢
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Remark: If most (for instance, 80 to 90%) of the total population variance, for
large p, can be attributed to the first several principal components, then these
components can “replace” the original p variables without much loss of
information.

e The magnitude of Y, measures the importance of the kth variable to the ith
principal component, irrespective of the other variables.



Principal components — ResunT 3

Let V1 =¥1X, Yo =¥5X, .-+, ¥, =¥/ X be the principal components
obtained from the covariance matrix 3. Then
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o The coefficients ¥;;, and the correlations py, x, can lead to different rankings as
the measures of the importance of the variables to a given component. However,
these rankings are often not appreciably different.

e In practice, variables with relatively large coefficients (in absolute value) tend to
have relatively large correlations.

e |t is suggested that both the coefficients and the correlations be examined to
help interpret the principal components.
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Principal Component Analysis

Principal components under normality - Georetue Inteefuslnbon

Suppose that X ~ N,(0,X). Then, x’¥7'x = ¢? is an origin-centered ellipsoid

which has axes e/ A Y, i = 1,2,...,p, where the (i, Xi) are the
eigenvalue-eigenvector pairs of 3. Moreover,

A =x3"1x =

A_
_ 1 1,2
= ,\—y1 + >\292 LR w7
3
4
T
)’l'_'!')‘
Y2 =l’Z‘
x'E"x_=c2
6
u=0
p=.5

Figure 8.1, Johnson and Wichern (2007)
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Principal Component Analysis
Standardized principal components
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Standardized principal components No= d\*‘@% (T -- \@?>

Let Z = (V/2)"1(X — p). Then E(Z) = 0 and
Cov(Z) = (VA2 =p
The ith principal component of Z = (Z1, Zs, -+ , Zy) is given by
Y = ¥Z =3V (X - )

and
5):1 Var(Y;) = f:1 Var(Z;) = p, PY;,Z = sz\/)‘_z

where the (\;,%¥;) are the eigenvalue-eigenvector pairs of p

Remark: The eigenvalue-eigenvector pairs derived from 3 are, in general,
not the same as the ones derived from p.

The PCs from X x are not the same as PCs from @

We'll look at a situation where standardization makes a difference

This will be the case when the scales of the X variables are
(substantially or vastly) different and they are ont comparable.
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~-Sample principal components g =

Used to summarize the sample variation by PCs.
The Algebra is the same as in population principal components.

> X1,X2,...,X, are n independent observations from a population
with g and 2.

> Xpx1 = sample mean vector.

> Spxp = {Sik} = sample covariance matrix.

> S has eigenvalue/vector pairs (5\1,§1), e (3\,,,*?,,) where
M>ho > > A ) i

» The ~ indicates these are estimates of population values.

» The it" sample principal component is given by

e /\1 A e N
Yi = ¥iX =¥1X1 T ¥i2X2 + -0 1+ ¥ipXp

» The it" PC sample variance = v/;\r(f/,-) =\ fori=1,...,p.
» The PC sample covariances = cov(y;, yx) = 0 for all i # k.

~

Total sample variance = Y 2 s;; = NI VNN Ap

R _?zk )‘z y — L
Thoae = e ,k=1,2,...,p Az b




Standardized sample principal components

Let z, = D_l/z(xj —X), j=1,2,...,p, be the standardized observations
with covariance matrix R = (D'/2)=18(DY2)=1. Then, the ith sample
principal component is given by

37@‘::"{éZ:@121+ﬂ222+"'+?ip2p7 7::1727"'7])

where the (Xi,@-)/\are the eigenvalue-eigenvector pairs of R with
A1 > Ay > -+ > )\, > 0. Moreover,
Sample variance(y;) = XZ', 1=1,2,...,p
Sample covariance(y;,yx) =0, 1 # k

Total standardized sample variance = tr(R) =p =Y 7 _, i
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Interpretation of sample principal components

» PCs based on a sample of n p-dimensional observations are
new variables specified by a rigid rotation of the original axes
to a new orientation such that the directions of the axes in
the new orientation have maximum variances in the sample.

» The rotation must be rigid since the new variables must be L.
» Directions of the new axes are based on S (or R)

The centered sample principal components y; = ¥;(x —X), i = 1,2,...,p,
can be viewed as the result of translating the origin of the original
coordinate system to X and then rotating the coordinate axes until they
pass through the scatter in the directions of maximum variance.

Geometry of Sample PC

X2

}Afzzfzx ] -

X1

The PCs are projections of observations onto the principal axes of
the ellipsoids.

We can re-center the x's, which also centers the y's; that is
(xi —X) =0 —> ¥ has mean 0

Subtraction of x only effects the mean and does not effect
variances and covariance.

X1 — X1 — X1 — 41
X2 shift location X2 — )_(2 rigid rotatation _),}2



The PCs are projections of observations onto the principal axes of
the ellipsoids.

~

N X2 — X2 n
Y2
@ 0]
o N _
=2 X1 — X1
oog 3/
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How Many Components to Retain 77

The number of principal components

How many principal components should be retained? (No definite answer)
e The amount of total sample variance explained;

e The relative sizes of the eigenvalues;

e The subject-matter interpretations of the components

v A useful visual aid to determining an appropriate number of principal
components is a scree plot (the magnitude of an eigenvalue vs. its
number).

Remark: A component associated with an eigenvalue near zero and,
hence, deemed unimportant, may indicate an unsuspected linear
dependency in the data.



A scree plot

The number of components is taken to be the point at which the remaining eigenvalues

are relatively small and all about the same size.
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Figure 8.2, Johnson and Wichern (2007)
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Graphing Principal Components

e Plots of the principal components can reveal suspect observations, as
well as provide checks on the assumption of normality.

» Reveal suspect observations (outliers, influential observations).
» Check multivariate normality assumptions.

v

Look for clusters.

» Provide insight into structure in the data.

Suspect Observations

» The first PCs can help reveal influential observations: those
that contribute more to variances than other observations
such that if we removed them the results change quite a bit.

» The last PCs can help to reveal outliers: those observations
that are a typical of the data set; they're inconsistent with the
rest of the data (could be miss-coded).

Graphing the principal components

e To help check the normal assumption, construct scatter diagrams for
pairs of the first few principal components. Also, make Q-Q plots from the
sample values generated by each principal components.

e Construct scatter diagrams and Q-Q plots for the last few principal
components. These help identify suspect observations.
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Figure 8.5 and 8.6, Johnson and Wichern (2007)



P.¢'s TrleehmlFion (ot easy Fusk )

Example 4. The weekly rates of return for five stocks listed on the New
York Stock Exchange were determined for the period January 1975 through
December 1976. Let 1, o, . .., x5 denote observed weekly rates of return for

the five stocks. Then
z = [0.0054, 0.0048, 0.0057,0.0063, 0.0037]"

and

1.000 0.577 0.509 0.387 0.462
0.577 1.000 0.599 0.389 0.322

R= {0509 0599 1.000 0.436 0.426 Orleneal

0.387 0.389 0.436 1.000 0.523 .
Nohalm 3
0.462 0.322 0.426 0.523 1.000

. : . : N ~
The eigenvalues and corresponding normalized eigenvectors of R are:

o~
3 - b
A = 2.857 _é:_[o./z;@.zm, 0.470,0.421, 0.421]" I éu B \l{"b
Xo=0.809 & = [0.240,0.509,0.260, —0.526, —0.582]
A3 =0540  é3 = [—0.612,0.178,0.335,0.541, —0.435]"
Ay =0452 &4 = [0.387,0.206, —0.662, 0.472, —0.382]"

A5 =0.343 &5 = [—0.451,0.676, —0.400, —0.176, 0.385]"

Using the standardized variables, we obtain the first two sample principal
components

1 =ejz =0.464z + 0.45729 + 0.47023 + 0.42124 4 0.421 25
U2 = e5z = 0.2402; + 0.50929 4 0.26023 — 0.52624 — 0.5822;5

These components account for

(5\14-5\2

) x 100% = 73%

of the total sample variance. The first component is an equally weighted

sum, or “index”, of the five stocks. This component might be called a market

component. The second component represents a contrast between the first
three stocks (which were chemical stocks) and the last two stocks (oil stocks).

It might be called an industry component.
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